29 research outputs found

    IK-FA, a new heuristic inverse kinematics solver using firefly algorithm

    Get PDF
    In this paper, a heuristic method based on Firefly Algorithm is proposed for inverse kinematics problems in articulated robotics. The proposal is called, IK-FA. Solving inverse kinematics, IK, consists in finding a set of joint-positions allowing a specific point of the system to achieve a target position. In IK-FA, the Fireflies positions are assumed to be a possible solution for joints elementary motions. For a robotic system with a known forward kinematic model, IK-Fireflies, is used to generate iteratively a set of joint motions, then the forward kinematic model of the system is used to compute the relative Cartesian positions of a specific end-segment, and to compare it to the needed target position. This is a heuristic approach for solving inverse kinematics without computing the inverse model. IK-FA tends to minimize the distance to a target position, the fitness function could be established as the distance between the obtained forward positions and the desired one, it is subject to minimization. In this paper IK-FA is tested over a 3 links articulated planar system, the evaluation is based on statistical analysis of the convergence and the solution quality for 100 tests. The impact of key FA parameters is also investigated with a focus on the impact of the number of fireflies, the impact of the maximum iteration number and also the impact of (a, ß, ¿, d) parameters. For a given set of valuable parameters, the heuristic converges to a static fitness value within a fix maximum number of iterations. IK-FA has a fair convergence time, for the tested configuration, the average was about 2.3394 × 10-3 seconds with a position error fitness around 3.116 × 10-8 for 100 tests. The algorithm showed also evidence of robustness over the target position, since for all conducted tests with a random target position IK-FA achieved a solution with a position error lower or equal to 5.4722 × 10-9.Peer ReviewedPostprint (author's final draft

    On local linearization of control systems

    Get PDF
    We consider the problem of topological linearization of smooth (C infinity or real analytic) control systems, i.e. of their local equivalence to a linear controllable system via point-wise transformations on the state and the control (static feedback transformations) that are topological but not necessarily differentiable. We prove that local topological linearization implies local smooth linearization, at generic points. At arbitrary points, it implies local conjugation to a linear system via a homeomorphism that induces a smooth diffeomorphism on the state variables, and, except at "strongly" singular points, this homeomorphism can be chosen to be a smooth mapping (the inverse map needs not be smooth). Deciding whether the same is true at "strongly" singular points is tantamount to solve an intriguing open question in differential topology

    Multiple-task motion planning of non-holonomic systems with dynamics

    No full text
    This paper addresses the motion planning problem in non-holonomic robotic systems. The system's kinematics and dynamics are represented as a control affine system with outputs. The problem is defined in terms of the end-point map of this system, using the endogenous configuration space approach. Special attention is paid to the multiple-task motion planning problem, i.e. a problem that beyond the proper motion planning task includes a number of additional tasks. For multiple-task motion planning two strategies have been proposed, called the egalitarian approach and the prioritarian approach. Also, two computational strategies have been launched of solving the motion planning problem: the parametric and the non-parametric. The motion planning and computational strategies have been applied to a motion planning problem of the trident snake robot. Performance of the motion planning algorithms is illustrated with computer simulations

    Robot modelling, perception, and motion synthesis

    No full text

    Motion planning of the trident snake robot equipped with passive or active wheels

    No full text
    We study the kinematics of the trident snake robot equipped with either active joints and passive wheels or passive joints and active wheels. A control system representation of the kinematics is derived, and control singularities examined. Two motion planning problems are addressed, corresponding to diverse ways of controlling the robot, and solved by means of the endogenous configuration space approach. The constraints imposed by the presence of control singularities are handled using the imbalanced Jacobian algorithm assisted by an auxiliary feedback. Performance of the motion planning algorithms is demonstrated by computer simulations

    Approximation of Jacobian inverse kinematics algorithms

    No full text
    This paper addresses the synthesis problem of Jacobian inverse kinematics algorithms for stationary manipulators and mobile robots. Special attention is paid to the design of extended Jacobian algorithms that approximate the Jacobian pseudoinverse algorithm. Two approaches to the approximation problem are developed: one relies on variational calculus, the other is differential geometric. Example designs of the extended Jacobian inverse kinematics algorithm for 3DOF manipulators as well as for the unicycle mobile robot illustrate the theoretical concepts
    corecore